CVaR Approximation to Chance-Constrained Programs: What Is Lost and How to Find It Back?

L. Jeff Hong1 Liwei Zhang2

1Department of Industrial Engineering and Logistics Management
The Hong Kong University of Science and Technology

2School of Mathematical Science
Dalian University of Technology, China

April 2010
Constrained Convex Program

Basic formulation:

$$\min \ h(x)$$

s.t. \ \ \ \ \ \ \ \ c_1(x, \xi) \leq 0, \cdots, c_m(x, \xi) \leq 0, \ \ \ \ x \in X.$$

- x is the vector of decision variables and ξ is the vector of parameters.
- $h(x)$ and $c_i(x, \xi), i = 1, \cdots, m$, are differentiable and convex in x, and X is a compact convex set.
- can be solved efficiently (see, for instance, Boyd and Vandenberghe (2004) for a comprehensive introduction).
Parameter Uncertainty

In many practical applications, there is parameter uncertainty in ξ. How should we handle that?

- A often used method: using $E(\xi)$ to substitute ξ.

- A very simple example:

$$\min x, \quad \text{s.t.} \quad x \geq \xi_i, \quad i = 1, 2, \ldots, m,$$

where ξ_1, \ldots, ξ_m are independent $N(0, 0.01)$ observations. Suppose that we use the mean of ξ in the optimization, then $x^* = 0$. However, $\Pr\{x^* \geq \xi_i, \ i = 1, 2, \ldots, m\} = 0.5^m$.

- The optimal solution of a constrained optimization problem is often at the corner of the feasible region, where multiple constraints are tight. Small perturbations to the constraints can easily make the solution infeasible.
A way to handle the parameter uncertainty is to reformulate the problem to

$$\begin{align*}
\text{min} & \quad h(x) \\
\text{s.t.} & \quad \Pr \{c_1(x, \xi) \leq 0, \ldots, c_m(x, \xi) \leq 0\} \geq 1 - \alpha, \\
& \quad x \in X.
\end{align*}$$

- The formulation is intuitive and easy to understand, although other formulations are possible.
- There are abundant applications, e.g., power network design, reservoir design, cash matching problem.
- When $m = 1$, the constraint is called a single chance constraint; when $m \geq 2$, it is called a joint chance constraint.
The Difficulties

Let $p(x) = 1 - \Pr\{c_1(x, \xi) \leq 0, \cdots, c_m(x, \xi) \leq 0\}$ and $p(x)$ is the probability that at least a constraint is violated. Then, the joint chance constraint becomes $p(x) \leq \alpha$.

There are two major difficulties in solving JCCPs:

- $p(x)$ may not be convex (or quasi-convex).
- $p(x)$ typically has no closed forms and is difficult to evaluate.
Convexity of the chance constraint:

- If $c_1(x, \xi), \cdots, c_m(x, \xi)$ are quasiconvex functions of (x, ξ), and ξ has a logconcave probability distribution, then $p(x)$ is quasiconvex and hence the JCCP is convex (Prékopa 2003).

- An individual chance constraint in the form of $\Pr\{a^T x \leq b\} \geq 1 - \alpha$ defines a convex set provided that the vector $(a^T, b)^T$ has a symmetric logconcave density with $\alpha < 1/2$ (Lagoa et al. 2005).

- A joint chance constraint in the form of $\Pr\{g_i(x) \geq \xi_i, i = 1, \ldots, m\} \geq 1 - \alpha$ defines a convex set if $g_i(x)$ is $(-r_i)$-concave and $\xi_i, i = 1, \ldots, m$, are independent random variables with $(r_i + 1)$-decreasing densities for some $r_i > 0$ for sufficient small α values (Henrion and Strugarek 2008).
Convex conservative approximations:

- Find a convex function $\tilde{p}(x)$ such that $\tilde{p}(x) \geq p(x)$ for all $x \in X$, and

$$\min h(x) \quad \text{s.t.} \quad \tilde{p}(x) \leq \alpha, \quad x \in X.$$

- Conditional value at risk (CVaR) approximation of Rockafellar and Uryasev (2000), it is known as the “best” convex conservative approximation.

- Bonferroni inequality is often used to break a joint chance constraint into m single chance constraints. It makes the solution more conservative.
Scenario analysis:

- Generate an i.i.d. sample \(\{\xi_1, \cdots, \xi_n\} \) and solve

\[
\begin{align*}
\min & \quad h(x) \\
\text{s.t.} & \quad c_i(x, \xi_\ell) \leq 0, \ i = 1, \cdots, m, \ \ell = 1, \cdots, n,
\end{align*}
\]

- \(x \in X \).

- The key is to determine the sample size \(n \) to ensure that \(p(x) \leq \alpha \) with high probability.

- It is studied by Calafiore and Campi (2005 and 2006) and De Farias and Van Roy (2004).

- It is very fast to solve even when \(n \) is large, but typically very conservative and volatile.
We start with a single chance constraint. A little transformation...

\[p(x) = 1 - \Pr\{c(x, \xi) \leq 0\} = \Pr\{c(x, \xi) > 0\} \]

\[= \mathbb{E}\left[1_{(0, +\infty)}(c(x, \xi))\right]. \]

The indicator function \(1_{(0, +\infty)}(z)\)
“Best” convex conservative approximation of $1_{(0, +\infty)}(z)$ is in the following form:

\[
\psi(z, t) = t^{-1}[t + z]^+
\]

The CVaR approximation $\psi(z, t)$
CVaR Approximation (cont’d)

Then, the “best” convex conservative approximation of $p(x)$ is

$$\tilde{p}(x) = \inf_{t > 0} E [\psi(c(x, \xi), t)] = \inf_{t > 0} \frac{1}{t} E [t + c(x, \xi)]^+.$$

This approximation proposes to solve

$$\begin{align*}
\text{minimize} & \quad h(x) \\
\text{s.t.} & \quad \inf_{t > 0} \frac{1}{t} E [t + c(x, \xi)]^+ \leq \alpha \\
& \quad x \in X.
\end{align*}$$
Note that

$$\inf_{t>0} \frac{1}{t} E [t + c(x, \xi)]^+ \leq \alpha$$

$$\Leftrightarrow \inf_{t>0} \left\{ \frac{1}{t} E [t + c(x, \xi)]^+ - \alpha \right\} \leq 0$$

$$\Leftrightarrow \inf_{\tau<0} \left\{ \tau + \alpha E [c(x, \xi) - \tau]^+ \right\} \leq 0$$

$$\Leftrightarrow \inf_{\tau \in \mathbb{R}} \left\{ \tau + \frac{1}{\alpha} E [c(x, \xi) - \tau]^+ \right\} \leq 0$$

$$\Leftrightarrow \text{CVaR}_{1-\alpha}(c(x, \xi)) \leq 0$$

This is the reason that the approximation is known as the CVaR approximation.
Hong, Yang and Zhang (OR, forthcoming) propose a DC (difference of convex functions) approximation of $1_{(0, +\infty)}(z)$. Let $\tilde{p}(x, t) = \mathbb{E}[\pi(c(x, \xi), t)] = \frac{1}{t} \left\{ \mathbb{E}[t + c(x, \xi)]^+ - \mathbb{E}[c(x, \xi)]^+ \right\}$. We propose to solve

$$\min h(x), \quad \text{s.t.} \quad \inf_{t > 0} \tilde{p}(x, t) \leq \alpha, \quad x \in X.$$
The equivalence between the DC approximation and the CCP:

- Note that \(\inf_{t>0} \tilde{p}(x, t) = \lim_{t \to 0} \tilde{p}(x, t) = p(x). \)

- Solving the CCP is equivalent to solving the DC approximation.

- Hong, Yang and Zhang (forthcoming) proposed to solve an \(\varepsilon \)-approximation:

\[
\min h(x), \quad \text{s.t.} \quad \tilde{p}(x, \varepsilon) \leq \alpha, \quad x \in X
\]

for some small \(\varepsilon > 0. \)
A Different DC Approximation

Note that

\[
\inf_{t>0} \frac{1}{t} \left\{ E[t + c(x, \xi)]^+ - E[c(x, \xi)]^+ \right\} \leq \alpha \\
\Leftrightarrow \inf_{t>0} \left\{ \frac{1}{\alpha} E[t + c(x, \xi)]^+ - t \right\} - \frac{1}{\alpha} E[c(x, \xi)]^+ \leq 0 \\
\Leftrightarrow \inf_{\tau<0} \left\{ \tau + \frac{1}{\alpha} E[c(x, \xi) - \tau]^+ \right\} - \frac{1}{\alpha} E[c(x, \xi)]^+ \leq 0 \\
\Leftrightarrow \inf_{\tau \in \mathbb{R}} \left\{ \tau + \frac{1}{\alpha} E[c(x, \xi) - \tau]^+ \right\} - \frac{1}{\alpha} E[c(x, \xi)]^+ \leq 0 \\
\Leftrightarrow \text{CVaR}_{1-\alpha}(c(x, \xi)) - \frac{1}{\alpha} E[c(x, \xi)]^+ \leq 0
\]
A Different DC Approximation (cont’d)

Then, the original CCP is equivalent to

\[
\begin{align*}
\min & \quad h(x) \\
\text{s.t.} & \quad \text{CVaR}_{1-\alpha}(c(x, \xi)) - \frac{1}{\alpha} \mathbb{E} [c(x, \xi)]^+ \leq 0 \\
& \quad x \in X.
\end{align*}
\]

The CVaR approximation is

\[
\begin{align*}
\min & \quad h(x) \\
\text{s.t.} & \quad \text{CVaR}_{1-\alpha}(c(x, \xi)) \leq 0 \\
& \quad x \in X.
\end{align*}
\]

It is clear that the CVaR approximation is a convex conservative approximation and the lost term is \(\frac{1}{\alpha} \mathbb{E} [c(x, \xi)]^+ \).
Sequential Convex Approximation

Suppose that x_0 is the optimal solution to the CVaR approximation.

- To simplify the notation, let $g(x) = \frac{1}{\alpha} E [c(x, \xi)]^+.$
- Suppose that $g(x)$ is differentiable. We let
 \[
 \tilde{g}(x) = g(x_0) + \nabla g(x_0)^T (x - x_0).
 \]
- Note $\tilde{g}(x)$ is tangent plane of $g(x).$ Because $g(x)$ is a convex function, $g(x) \geq \tilde{g}(x)$ for all $x \in \mathbb{R}^d.$
Sequential Convex Approximation (cont’d)

Then, we propose to solve

$$\min h(x), \quad \text{s.t. } \text{CVaR}_{1-\alpha}(c(x, \xi)) - \tilde{g}(x) \leq 0, \ x \in X.$$

Let x_1 denote its optimal solution. This problem has several properties:

- It is convex.
- It is a conservative approximation, i.e., x_1 is a feasible solution to the original CCP, because

$$\text{CVaR}_{1-\alpha}(c(x_1, \xi)) - g(x_1) \leq \text{CVaR}_{1-\alpha}(c(x_1, \xi)) - \tilde{g}(x_1) \leq 0.$$

- x_1 is at least as good as x_0, i.e., $h(x_1) \leq h(x_0)$, because x_0 is a feasible solution to the problem as

$$\text{CVaR}_{1-\alpha}(c(x_0, \xi)) - \tilde{g}(x_0) = \text{CVaR}_{1-\alpha}(c(x_0, \xi)) - g(x_0) \leq \text{CVaR}_{1-\alpha}(c(x_0, \xi)) \leq 0.$$
A different way of understanding:

- Note that x_0 satisfies

$$\text{CVaR}_{1-\alpha}(c(x_0, \xi)) \leq 0.$$

- If $h(x_1) < h(x_0)$, i.e., the new solution is better than the CVaR approximation, then

$$\text{CVaR}_{1-\alpha}(c(x_1, \xi)) > 0$$

$$\text{CVaR}_{1-\alpha}(c(x_1, \xi)) - g(x_1) < 0.$$

- The lost term $g(x)$ in the CVaR approximation is now partially recovered and becomes effective.
We don’t have to stop at x_1. Given x_1, we can continue:

- Let $\tilde{g}(x) = g(x_1) + \nabla g(x_1)^T(x - x_1)$.
- Then, find x_1 that solves

$$\min h(x), \quad \text{s.t.} \quad \text{CVaR}_{1-\alpha}(c(x, \xi)) - \tilde{g}(x) \leq 0, \quad x \in X.$$

- Again, x_2 is a feasible solution of the original CCP and $h(x_2) \leq h(x_1)$.

We can continue and obtain an infinite sequence $\{x_0, x_1, \ldots\}$. We call this approach “Sequential Convex Approximation”.

A critical question: What are the limiting points of $\{x_0, x_1, \ldots\}$?
Sequential Convex Approximation (cont’d)

Under some technical conditions,

- all cluster points of \(\{x_0, x_1, \ldots \} \) are KKT points of the original CCP;
- if \(h(x) \) is strictly convex, \(\{x_0, x_1, \ldots \} \) converges to a KKT point.

As the chance constraint is typically tight at the KKT points, we have

\[
\text{CVaR}_{1-\alpha}(c(\bar{x}, \xi)) - g(\bar{x}) = 0,
\]

where \(\bar{x} \) is a cluster point of \(\{x_0, x_1, \ldots \} \). Then, we completely find back the lost term \(g(x) \).

In summary, the Sequential Convex Approximation finds a KKT point that is better than the CVaR approximation (which is the “best” convex conservative approximation).
Handling Joint Chance Constraint

Note that

\[p(x) = 1 - \Pr\{c_1(x, \xi) \leq 0, \ldots, c_m(x, \xi) \leq 0\} = \Pr\{\max c_i(x, \xi) > 0\}. \]

- If we let \(c(x, \xi) = \max c_i(x, \xi) \), it becomes a single chance constraint.

- However, a critical problem is that \(\text{CVaR}(c(x, \xi)) \) and \(g(x) = \frac{1}{\alpha} \mathbb{E} [c(x, \xi)]^+ \) may not be differentiable with respect to \(x \).

- A differentiable case: If \(\Pr\{c_i(x, \xi) = c_j(x, \xi)\} = 0 \) for all \(x \in X \) and all \(i \neq j \), then both \(\text{CVaR}(c(x, \xi)) \) and \(g(x) \) are differentiable with respect to \(x \).
What if $\text{CVaR}(c(x, \xi))$ and $g(x)$ are not differentiable?

- We have to redefine a stationary point, as the KKT conditions are no longer applicable.

- It becomes a non-convex and non-smooth optimization problem.

- If we substitute $\nabla g(x)$ by any subgradient of $g(x)$, the Sequential Convex Approximation approach still works (in theory).

- However, efficient non-smooth optimization algorithms and solvers are difficult to find.
A log-exponential smoothing approach to the non-smooth JCCP:

- By Rockafellar (1970), when $\delta > 0$,

$$\max c_i(x, \xi) \leq \delta \log \left[\sum_{i=1}^{m} e^{\frac{1}{\delta} c_i(x, \xi)} \right] \leq \max c_i(x, \xi) + \delta \log m.$$

- We propose to solve the problem

$$\min h(x), \quad \text{s.t.} \quad \Pr \left\{ \delta \log \left[\sum_{i=1}^{m} e^{\frac{1}{\delta} c_i(x, \xi)} \right] \leq 0 \right\} \geq 1 - \alpha, \quad x \in X.$$

- Note that the new problem is a smooth CCP. It can be solved by using the Sequential Convex Approximation algorithm.

- The KKT solutions of the problem converges to the set of stationary points of the non-smooth problem as $\delta \searrow 0$.

Hong/Zhang (HKUST/DLUT)
Chance Constrained Program
April 2010 24 / 29
Solving the Subproblem

To apply the Sequential Convex Approximation algorithm, in each iteration, we need to solve

$$\min h(x), \quad \text{s.t. CVaR}_{1-\alpha}(c(x, \xi)) - \tilde{g}(x) \leq 0, \ x \in X$$

where

$$\tilde{g}(x) = \frac{1}{\alpha} \mathbb{E} [c(x_i, \xi)]^+ + \left(\frac{1}{\alpha} \mathbb{E} [c(x_i, \xi)]^+ \right)^T (x - x_i).$$

By Broadie and Glasserman (1996),

$$\nabla \mathbb{E} [c(x, \xi)]^+ = \mathbb{E} \left[\nabla_x c(x, \xi) \cdot 1\{c(x, \xi) > 0\} \right].$$

By Hong and Liu (2009),

$$\nabla \text{CVaR}_{1-\alpha}(c(x, \xi)) = \mathbb{E} \left[\nabla_x c(x, \xi) \mid c(x, \xi) > \text{VaR}_{1-\alpha}(c(x, \xi)) \right].$$
Solving the Subproblem (cont’d)

We use a gradient-based Monte Carlo method:

- Take an i.i.d. sample of ξ, denoted as ξ_1, \ldots, ξ_n.

- We may use the sample to estimate $\text{CVaR}_{1-\alpha}(c(x, \xi))$, $\mathbb{E}[c(x, \xi)]^+$, $\nabla \text{CVaR}_{1-\alpha}(c(x, \xi))$ and $\nabla \mathbb{E}[c(x, \xi)]^+$.

- Then, we suggest to use a gradient-based algorithm to solve the problem with the estimated values and gradients. We use `fmincon` of Matlab® in all our numerical studies.

- We prove that, as $n \to \infty$, the optimal solution to the sample problem converges to the set of optimal solutions of the original subproblem.
An Illustrative Example

A norm minimization problem:

\[
\begin{align*}
\text{minimize} & \quad -\|x\|_1 \\
\text{subject to} & \quad \Pr \left\{ \|\xi \circ x\| \leq 10, \quad i = 1, \ldots, m \right\} \geq 1 - \alpha, \\
& \quad x_j \geq 0, \quad j = 1, \ldots, d.
\end{align*}
\]

- \(\|x\|_1 = \sum_{j=1}^{d} |x_j|\) and \(\|x\| = \left(\sum_{j=1}^{d} x_j^2\right)^{-1/2}\).

- \(\xi \circ x = (\xi_1 x_1, \ldots, \xi_d x_d)^T\) denote the Hadamard product (or entrywise product) of \(\xi\) and \(x\).

- \(\xi_{ij}, \ i = 1, \ldots, m\) and \(j = 1, \ldots, d\), are i.i.d. standard normal random variables.

- The optimal solution can be derived by the symmetry and property of normal distributions.
An Illustrative Example

We set $d = 10$, $m = 10$ and $\alpha = 0.1$. Then, the optimal solution is $x_1^* = \cdots = x_d^* = 2.08$ and the optimal objective value is $f^* = -20.82$.
THANK YOU!